TRITERPENES OF LITHOCARPUS SPECIES

Department of Chemistry, University of Hong Kong, Hong Kong

and

HEE TAI CHEUNG

Department of Pharmacy, University of Sydney, Sydney, N.S.W. 2006, Australia

(Received 6 January 1974)

Key Word Index—*Lithocarpus cornea*; *L. glabra*; *L. hancei*; *L. harlandi*; *L. polystacha*; Fagaceae; triterpenes; 24-methylcycloartanes; chemotaxonomy.

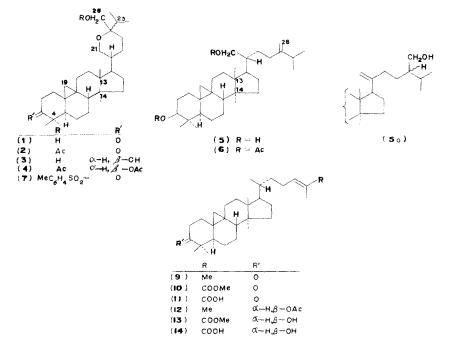
Abstract—The triterpenes of the five *Lithocarpus* species examined comprised members of the friedo- and unrearranged oleanane groups, viz. friedelin, friedelan- 3β -ol, taraxerol and β -amyrin. Glutinol was also present, except in *L. harlandi* where friedelan- 2α , 3β -diol was found. In addition, three new cycloartane triterpenes, lithocarpolone (21,24-epoxy-24-hydroxymethyl-cycloartan-3-one), lithocarpolol (21,24-epoxy-24-hydroxymethyl-cycloartan-3 β -ol), and 24-methylenecycloartan- 3β , 21-diol were found in *L. polystachya*, and their structures determined.

INTRODUCTION

OF THE three genera constituting the Fagaceae in Hong Kong, Quercus^{1,2} and Castanopsis³ have already been shown to contain triterpenes of the friedelane, D:B-friedo-oleanane, ursane, lupane and hopane groups. We now present the results of a complementary study of five species of the remaining genus, Lithocarpus, and also provide evidence for the structures of three new triterpenes from L. polystachya.

RESULTS

All five Lithocarpus species examined (viz L. cornea, L. glabra, L. hancei, L. harlandi and L. polystachya) contain friedelin, friedelan- 3β -ol, taraxerol (occurring also as the acetate in L. cornea), and β -amyrin (Table 1). Glutinol was isolated from all species except L. harlandi which contains instead friedelan- 2α , 3β -diol (pachysandiol-A), previously reported to occur only in Pachysandra terminalis. L. polystachya also yielded three cycloartane triterpenes (1), (3) and (5), the structures of which were determined.


Two of the triterpenes are closely related; upon reduction lithocarpolone (1), $C_{31}H_{50}O_3$, $(v_{\text{max}} 1710 \,\text{cm}^{-1})$ yields lithocarpdiol (3), $C_{31}H_{52}O_3$, (no C=O absorption). These two triterpenes each contains a primary hydroxy group of the type \geq C-CH₂OH (AB q at δ 3·4, J 11 Hz†), and on acetylation yield lithocarponone acetate (2) (AB q at δ 4·1; no OH

- * Present address: Government Chemical Laboratories, Hong Kong.
- + For full NMR data, see Table 2. Measurements are in CDCl₃ solutions unless otherwise stated.
- ¹ ARTHUR, H. R., HUI, W. H., LAM, C. N. and SZETO, S. K. (1964) Aust. J. Chem. 17, 697; HUI, W. H., Ho, C. T. and YEE, C. W. (1965) Aust. J. Chem. 18, 2043.
- ² ARTHUR, H. R., CHENG, K. F., LAU, M. P. and Lie, K. J. (1965) Phytochemistry 4, 969.
- ³ ARTHUR, H. R. and Ko, P. D. S. (1968) Aust. J. Chem. 21, 2583. ARTHUR, H. R. and Ko, P. D. S. (1969) Aust. J. Chem. 22, 597.
- ⁴ KIKUCHI, T. and TOYODA, T. (1967) Tetrahedron Letters 3181; SAMSON, A. S., STEVENSON, S. J. and STEVENSON, R. (1968) J. Chem. Soc. B 2342.

	L. cornea	L. glabra	L. hancei	L. harlandi	L. polystachya
Taraxeryl acetate	0.0005			*	
Friedelin	0.10	0.0003	0.071	0.091	0.005
Friedelan-3β-ol	0.01	0.0003	0.016	0.067	0.001
Glutinol	0.01	0.040	0.001		0.017
β-Amyrin	0.003	0.007	0.001	0.002	0.003
Taraxerol	0.09	0.12	0.0004	0.004	0.088
Friedelan-2α,3β-diol				0.003	
Lithocarpolone					0.005
Lithocarpdiol					0.001
24-Methylenecycloartan-					
$3\beta.21$ -diol					0.005

TABLE 1. YIELDS OF TRITERPENES FROM LEAVES OF Lithocarpus SPLCIES (* DRY WEIGHT)

absorption) and lithocarpdiol diacetate (4) (AB q at δ 4·1. J 11·5 Hz: 1-H multiplet at δ 4·6) respectively. Common to both triterpenes is a cyclopropane ring of the type $>C-(CH_2)-C<$ (AB q near δ 0·6, J 4 Hz) and an isopropyl group. Evidence for the latter is derived from NMR decoupling experiments (in C_6D_6). Thus lithocarpdiol diacetate (4) gives rise to two methyl doublets both of which collapse to singlets upon saturation of a heptet at δ 2·4.

The remaining oxygen atom in the structure of lithocarpolone (and lithocarpdiol) is assigned to an ether function of the type >CH.CH₂.O.C \leq . Thus in the NMR spectra of lithocarpolone, lithocarpdiol and their respective acetates is a 2-H multiplet at δ 3·2-3·9. For lithocarpolone acetate the signal constitutes the AB part of an ABX system (Table 2) and it simplifies to an AB quartet (J 11·5 Hz) upon double irradiation at δ 1·7.

The third triterpene (5), $C_{31}H_{52}O_2$, also has a cyclopropane ring of the type $>C-(CH_2)-C<$ and an isopropyl group. The latter gives rise to two superimposing methyl doublets detected when the 60 and 100 MHz spectra were compared. Other structural features are a terminal methylene (v_{max} 890 cm⁻¹; δ 4·70, 4·74) and two hydroxy groups. One hydroxyl is secondary (1-H multiplet at δ 3·3 shifting to 4·6 on acetylation), and the other is primary and of the type > CH . CH₂ . OH (2-H multiplet at δ 3·7, becoming on acetylation AB of ABX at δ 4·1) (Table 2).

TABLE 2 CHEMICAL SHIETS*	(AND COUPLING CONSTANTS IN HZ)	OF TRETEBRENIE OF L. nolvetachna
TABLE 2. CHEMICAL SHIFTS	TAND COURLING CONSTANTS IN TIZE	OF INTERPENES OF L. POLYSLACHYA

H-39 H-19 H-19 H-21 H-21 H-25 H-28	Lithocarpolone (1)	Lithocarpolone acetal: (2)	Lithocarpolone tosylate (7)	Lithocarpdiol (3)	Lithocarpdiol diaectate (4)	24-Methylene- eyeloartan-3β 21-diol (5)	24-Methylene- cycloa(tan-3)/.21- diol diae/tate (6)
H-32				< 3·3 m	4:57	3-92	4:58
					$(J_{NN} + J_{WN} = 15)$	$(J_{AX} + J_{BX} = 15.5)$	$-(J_{XX} + J_{BX} = 13)$
H-19	():59 d (J 4)	0:59 d (J=4)	0.6 d(J, 4)	0:35 d (J. 4)	0.35 d(J, 4)	0.31 d (J, 4)	0.35 d (J, 4)
H-19	~ 0·8 m†	0.78 d (J. 4)	+	0.56 d (J. 4)	$0.57 \ d (J, 4)$	0.56 d (J, 4)	0:59 d (J. 4)
H-21	< 3:3 m/r	-3.34 g(J, 11.5, -2)	< 3·2 m	~ 3/3 m ⁺	$3.30 \text{ or} (J, 11.5, \sim 2)$	~ 3:7 m	3.94 q (J, 11, 5.5)
H-21	3-83 m	$-3.82 \ q + (J, 11.5, 8)$	- 3·7 m	3-8 m	3.85 g (J, 11.5, 8)	~ 3·7 m	4 22 a (J. 11, 2-5)
H-25	†		*	1	2:43 haptet	†	* *
H-28	3.30 d (J, 11)	3:94 d (J. 11:5)	3.94	3:25 d (J. 11)	3:96 d (J. 11:5)	4:70	4.67
H-28	3:58 d (J. 11)	4-15 d (J. 11-5)	3.97	3:55 d (J. 11)	4:14 d (J. 11:5)	4.74	4.73
AcO		2:10			2.05		2.05
					2.09		2.05
TsO			2:45 (3H)				
•			7:35 d (J. 8)				
			7:85 d (J, 8)				

^{*} Relative to SiMe₄; CDCl₃ solution.

Biogenetic considerations suggest that the *L. polystachya* triterpenes, each with 31 carbon atoms and a cyclopropane ring, are 24-methylcycloartanes with oxygen functions at C-3. Confirmation comes from a study of the NMR signals of their methyl groups.^{5,6} In

TABLE 3. NMR FREQUENCIES* OF METHYL GROUPS (Hz) OF CYCLOARTANE TRITERPENES

	Substituents at C-3	4α- M e	4 <i>β</i> – M e	14α–Me	13 <i>β</i> –Me	25-Me† (doublets, J 7)
Cycloartenone (9)	(3-oxo)	64.5	62	54.5	60	
Methyl maniferonate (10)	(3-oxo)	65	62	54	59	
Mangiferonic acid (11)	(3-oxo)	65	62	54	60	
Lithocarpolone (1)	(3-oxo)	65	62	53-5	62	50.5, 53.5
Lithocarpolone acetate (2)	(3-oxo)	65.5	62.5	54	61.5	55, 56.5
Lithocarpolone tosylate (7)	(3-oxo)	65.5	62	53	58-5	49.5, 51.5
Methyl maniferolate (8)	β -OH	58.5	49	54	58.5	
Mangiferolic acid (14)	β-ОН	58	49	54	58	
Lithocarpdiol (3)	β-ОН	58	48.5	53.5	60	51. 53·5
24-Methylenecycloartan-3β.21-diol (5)	β-ОН	58	49	55	60	62, 62
, , , , , , , , , , , , , , , , , , , ,	,					(65.5, 65.5)
Cycloartenyl acetate (12)	β-OAc	51	54	54	58	
Lithocarpdiol diacetate (4)	β-OAc	51	53.5	53.5	60	55, 56.5
24-Methylenecyloartan-3β,21-diol	,					
diacetate (6)	β -OAc	51	53.5	55	60	62, 62 (64, 64)

^{*} Relative to SiMe₄ at 60 MHz but measured also at 100 MHz; CDCl₃ solution.

[†] Partially obscured by other peaks.

[†] Data listed only for L. polystachya triterpenes; frequencies in parenthesis refer to C₆D₆ solution.

⁵ CHEUNG, H. T. and WILLIAMSON, D. G. (1969) Tetrahedron 25, 119, and references therein; CHEUNG, H. T., SITTO, J. C. F. and WATSON, T. R. (1973) Aust. J. Chem. 26, 609.

⁶ CHEUNG, H. T. and YAN, T. C. (1972) Aust. J. Chem. 25, 2003.

Table 3. the methyl resonance frequencies of some cycloartane compounds and of the *L. polystachya* triterpenes and their derivatives are assigned and compared. As is expected for compounds with identical skeletons, the methyl group at position 4α or position 4β gives rise to a constant resonance frequency (± 0.5 Hz at 60 MHz) for a specific substituent at C-3; likewise, the methyl group at 14α , being remote from both ring A and the sidechain, resonates within a narrow range (54 + 1 Hz at 60 MHz) for all 13 compounds listed.

Cycloartane triterpenes are also characterized by MS fragmentations initiated by the 9:19-cyclopropane ring, and which result in an ion (a) of m/e independent of the substitution pattern in ring A. The MS of the L. polystachya triterpenes and their derivatives conform to this pattern (Table 4) and show three groups of ions, (i) the M^+ and ions derived from it by simple losses, (ii) ion (a) and/or ions derived therefrom, (iii) ions due to cleavage of the side-chain (sometimes accompanied by rearrangement of one or two hydrogen atoms) and of ring D (see b). 10

Table 4. 70 eV fragment ions $(m/e)^*$ of L. polystachya triterpenes

Assignments	L	ithocarpolon	e	Lithocarpdiol	24-Methylene- cycloartan-	24-Methylene- eyeloartan- 36.21-diol
[R-H for (1), (3) and (5); R=Ac for (2), (4) and (6)]	Lithocarpolone (1)	acetate* (2)	Lithocarpdiol (3)	diacotate* (4)	3/3.21-dio1 (5)	diacetate (6)
M	470	512	472	556	456	540
M-Me M-CH(Me),	455	497	457	541#	441‡	525\$
M-ROH	427 452	469	429 454	513	4134	497
M-KOH M-Mc-ROH	402	452	404	496‡ 481±	43N#h	J80%
M-Me-2ROH				497.1	423‡ 405‡	465‡ 405
.M-2ROH←					420	420±
M-CH-OR	4395	439b	441±6	483b	425	V=174
GM-CH-OR-ROH		75.54	423±	4232	407	
M-CH(Me) ₂ -ROH-H ₂ O	400%	409‡ 391	41128	453‡t	395‡€	437¢
→M-CH(Me) ₂ -2ROH			393	3934		
M−C ₅ H ₉ −ROH M−C ₅ H ₉ −2ROH				,	369‡ 351	411‡ 351
(a) (a)-Me		374	332	374	316 301	358 343
(a)-CH(M¢) ₂ (a)-ROH	289	331	289	331		******
(a)-CH ₂ OR	301	301	301*	301	285	298‡ 285
M-side-chain	313	313	315	357	315	357
Į	312	- 312	314	356	314	356
	311	311	313	355	313	355
M-side chain-ROH			297	297	297	297
(b)	271	271	273	315	373#	315
(b)-ROH			255	255	255	255

^{*} Ions of rel. abundance $> 20^{\circ}_{co}$ are shown in italies; b—base peak.

[†] Confirmed by accurate mass measurements.

[‡] m* observed for transition.

[§] Also derived from M '-ROH ion (m* observed).

⁷ AUDIER, H. E., BEUGELMANS, R. and DAS, B. C. (1966) Tetrahedron Letters 4341.

⁸ APLIN, R. T. and HORNBY, G. M. (1966) J. Chem. Soc. (B) 1078.

⁹ Wylle, S. G. and Djerassi, C. (1968) J. Org. Chem. 33, 305.

¹⁰ Tökés, L., Jones, G. and Djerassi, C. (1968) J. Am. Chem. Soc. **90**, 5465.

For lithocarpolone, lithocarpdiol and their acetates, the three most abundant ions correspond to the loss of CH_2OR (R=H or Ac) or of isopropyl (but not of both groups) from the M^+ and to the loss of CH_2OR from ion (a) (Table 4). The observed ease of cleavage shows that these two groups are located α to the ether oxygen atom as is indicated in partial structure (8).* Structures (1) and (3) thus represent lithocarpolone and lithocarpdiol respectively.

Of the two alternative structures (5) and (5a) for the third triterpene, we favour the former (viz 24-methylenecycloartan-3 β ,21-diol). For (5) but not for (5a), the two terminal methyl groups are remote from any asymmetric centre and from a hydroxy group, and are expected to be equivalent magnetically and not deshielded on acetylation. The result in Table 3 (right column) shows that this expectation was substantiated when the triterpene and its diacetate were examined in two solvents (and at two resonance frequencies).

For confirmation of structure (5) the following decoupling experiment (in C_6D_6) was carried out. Irradiation at δ 2·5 resulted in the collapse of the methyl doublets (see above) and also caused sharpening of the signal due to the vinyl protons (width-at-half-height, $2\cdot8 \rightarrow 1\cdot6$ Hz) as the result of reduction of allylic coupling.

24-Methylenecyloartan-3 β ,21-diol and lithocarpdiol are assigned a 3 β configuration based on NMR data (Table 2). For the latter compound the configuration is also supported from the result of borohydride reduction of the corresponding ketone.

The stereochemistry of the side-chain shown in (1)–(6) is proposed on the assumption that C-20 retains the configuration found in cycloartane triterpenes, and in the cases of (1)–(4), on the relative magnitude of the chemical shifs and vicinal coupling constants of the two protons at C-21¹¹ (see (15) and Table 2).

DISCUSSION

As the previous¹⁻³ and present work have covered nearly half of the 30 or so species of the Fagaceae indigenous to Hong Kong, it is appropriate to comment on the salient features of the triterpene distribution which have emerged. In Table 5 are summarized the results of the work in Hong Kong¹⁻³ and elsewhere.¹²⁻²³ Of the five genera which have

- * Partial structure (8) is also supported by the observation, in the case of lithocapdiol diacetate, of a nuclear Overhauser effect (11% enhancement) between the methylene and methyl protons of the CH₂OAc and isopropyl groups respectively.
- ¹¹ JACKMAN, L. M. and STERNHELL, S. (1969) Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, 2nd edn, pp. 240–241, 280–293, Pergamon Press, Oxford.
- ¹² Marsili, A. and Morelli, I. (1972) Phytochemistry 11, 2733.
- ¹³ LUDWICZAK, S. and SZCZAWINSKA, K. (1965) Roczniki Chem. 39, 583; Píšova, M. and SOUCEK, M. (1973) Phytochemistry 12, 2068.
- ¹⁴ ZORINA, A. D., MATYUKHINA, L. G. and RYABININ, A. A. (1967) Khim. Prirodn. Soedin, Akad. Nauk. Uz. SSR. 2, 291; Chem. Abstr. 66, 487.
- ¹⁵ Онмото, Т., Nikaido, Т. and Ikuse, М. (1972) Shoyakugaku Zasshi 26, 36.
- ¹⁶ RONCERO, A. V. and TORO, F. A. (1966) Grasas Aceites 20, 178; RAVENTOS, J. and RIBO, J. M. (1972) Phytochemistry 11, 3089.
- ¹⁷ Jyoti, M. and Rastogi, R. P. (1970) Indian J. Pharm. 32, 167.

been examined, only limited data are available on *Castanea* and *Fagus*. The other three genera all produce triterpenes of the D:A-friedo oleanane group. In particular friedelin and/or the corresponding 3-alcohols occur in all but one species of the 23 species of *Castanopsis*, *Quercus* and *Lithocarpus* studied. The genus *Lithocarpus* is characterized by the prevalent occurrence of D:B-friedo-, D-friedo-, and unrearranged oleanane triterpenes, which are significantly less common in *Quercus* and rare in *Castanopsis*. On the other hand, the genus *Castanopsis* is characterized by triterpenes of the hopane, lupane and ursane groups. It appears that the genus *Quercus* lies chemotaxonomically between *Castanopsis* and *Lithocarpus*.

Table 5. Distribution of triterpenes in the Fagaceae (plant species in parenthesis refer to this or earlier Hong Kong work)

				C	ISId	пор	SİS		Fa	gus -					Q	mer	CHS						1.	.ithe	rca	pus	
Triferpene group	Triterpenes isolated	Castanea sativa ¹²	(C. concinna)3	(C. cuspidata) ³	(C. eyrei) ³	(C. fahri) ³	(C. fissa) ³	(C. hickelii)	F. sylvatica ¹³	F. taurica ¹⁴	Q. acutissima15	of Supplies in a	(Q. championi)1	(Q. glauca) ¹	Q. ilex 16	Q. incana ¹⁹		Q. pachyphlla ¹	Q. petreae 18	Q. rahur 1921	Q. sessilis ²²	Company of the	(L. cornea)	(L. glabra)	(L. hancei)	(L. harlandi)	(L. nolvstachva)
Hopane	Hopan-22-ol-3-one Hopan-3/(.22-diol Hop-17(21)-en-3/(-ol (and or acctate)				++			+				***															N
Ursane	z-Amyrin Taraxasterol Ursolic acid	· Ł.				+		÷-							+												
Lupanc	Lupenone Lupeof Betulin Betulinic acid (and/or methyl ester acetate)	+		+			+		± +		+				-4					+	-+-						
D:A- Friedo- oleunane	Friedelan-28-ol-3-one Friedelan-37-ol (and or acetate) Friedelan-3/i-ol Friedelin Friedelan-2x,3/i-diol		+++	+++-	÷ +	+	+	+			+	+++	++	+ +	+-	+	-	-	+	+		+	++	+++	+	+ + +	+
D: B- Friedo- oleanane	Glutinol Glutinone																			+			+	+	+		+
D-Friedo- oleanane	Taraxerol (and/or acetate)																			+	+	+	+	+	+	+	+
Oleanane	Oleanolic acid β-Amyrenone β-Amyrin (and/or acetate)								+		т		+		+			-			+		+	7"	+	+	+
Arborane	Isoarborinyl acetate												4.														
Dammarane	20-Hydroxydammar-24-en-3-one																			+							
Cyclo- artane	24-M; thylenecycloartan-3// 21-diol (5) Lithocarpolone (1) Lithocarpdiol (3) Cycloartenylacetate								+																		+ + ,

¹⁸ Ryabinin, A. A. and Lupunova, V. F. (1971) Zh. Obscheh. Khim. 31, 3478.

¹⁹ KALRA, V. K., KUKLA, A. S. and SESHADRI, T. R. (1966) Current Sci. (India) 35, 204.

²⁰ Shaw, G. and Yeadon, A. (1962) J. Chem. Soc. 3276.

²¹ Wrzeciono, U. (1963) Roczniki Chem. 37, 1457; Wrzeciono, U. (1964) Roczniki Chem. 38, 79,

²² Wrzuciono, U. (1965) Roczniki Chem. **39**, 385.

²³ Kamano, K., Tachi, Y., Otaki, T. and Komatsu, M. (1968) Yakugaku Zasshi 88, 1246.

EXPERIMENTAL

M.ps were uncorrected. Optical rotations and IR spectra were measured in CHCl₃ solns and Nujol mulls respectively. MWs were recorded from MS. MS (Table 4) were recorded at 70 eV. and mass matching was performed in conjunction with a DS-30 data-processing system. Isolated compounds were identified by m.m.p. and IR spectral comparisons with authentic samples. Petrol. refers to the fraction of b.p. 60–80°.

Isolation of triterpenes. Dried and milled leaves of plants collected in Hong Kong were cold extracted twice with petrol. The residue obtained on evaporation of the combined extracts was chromatographed on 15 $20 \times$ its weight of Al₂O₃ using gradient elution with $C_6H_{6^-}$ petrol, and then with CHCl₃- C_6H_6 .

Lithocarpus cornea, L. glabra, L. hancei, L. harlandi, and L. polystachya each gave the following compounds (in yields shown in Table 1). (a) Friedelin, m.p. 262–264° (from petrol), v_{max} 1720 cm⁻¹. (b) Friedelan-3 β -ol, m.p. 282–285° (from petrol), acetate, m.p. 290–291° (from C₆H₆). (c) Glutinol, m.p. 210–212° (from petrol), v_{max} 3480 cm⁻¹, acetate, m.p. 190–192°. (d) β -Amyrin, m.p. 198–200° [from (Me)₂CO], v_{max} 3300 cm⁻¹; acetate, m.p. 238–240° (from CHCl₃–MeOH), v_{max} 1740, 1250 cm⁻¹. (e) Taraxerol, m.p. 283–284° (from C₆H₆), v_{max} 3500, 1640 cm⁻¹; acetate, m.p. 309–313° (from C₆H₆–petrol), v_{max} 1740, 1250 cm⁻¹. Taraxeryl acetate was also isolated from L. cornea. From the polar fraction of the triterpene mixture from L. harlandi was isolated friedelan-2 α ,3 β -diol (pachysandiol-A)⁴ forming needles from (Me)₂CO, m.p. 282–285°, v_{max} 3500 cm⁻¹, diacetate, m.p. 235–236° [from (Me)₂CO].

Isolation of cycloartane triterpenes from L. polystachya and conversion to acetates. In the chromatographic separation of the triterpenes from L. polystachya leaves, after removal of the substances recorded above, further elution with CHCl₃ C_0H_0 afforded (in yields shown in Table 1): Lithocarpolone (1), needles from (Mc)₂CO, m.p. 190–192°, [z]_D + 28°, v_{max} 3450, 1710 cm⁻¹ (Found: C, 79·5; H, 10·7. $C_{31}H_{50}O_3$ requires C, 79·1; H, 10·7%). 24-Methylenecycloartan-3 β ,21-diol (5), needles from (Me)₂CO–MeOH, m.p. 165-168°, [z]_D + 42°, v_{max} 3350, 456. 890 cm⁻¹ (Found: C, 78·5; H, 11·4%; MW 456. $C_{31}H_{52}O_2$. H₂O requires C, 78·4; H, 11·5%, $C_{31}H_{52}O_2$ requires MW 456). Lithocarpoliol (3), needles from (Me)₂CO, m.p. 179–180°, [z]_D + 54°, v_{max} 3350 cm⁻¹ (Found: C, 77·1; H, 11·2°)₀; MW 512. $C_{31}H_{52}O_{31}I/2H_{51}O$ requires C, 77·4; H, 11·1°)₀, $C_{31}H_{52}O_3$ requires MW 512).

Each of the above three triterpenes (40 mg) were treated for 5 hr with (Ac)₂O (8 ml) and C_5H_5N (1 ml) under reflux, and worked up to give: Lithocarpolone acetate (2), needles from MeOH, m.p. 144-145°, $[\alpha]_D + 37^\circ$, $\nu_{max} 1745$, 1710, 1240 cm⁻¹ (Found: C, 76·6; H, 9·8%; MW 512·387. $C_{33}H_{52}O_4$ requires, C, 77·3; H, 10·2%; MW 512·386). 24-Methylenecycloartan-3 β ,21-diol diacetate (6), needles from (Me)₂CO–MeOH, m.p. 137–139°, $[\alpha]_D + 50^\circ$, $\nu_{max} 1740$, 1635, 1245, 890 cm⁻¹ (Found: C, 77·9; H, 10·3, $C_{35}H_{46}O_4$ requires C, 77·8; H, 10·4°₆). Lithocarpdiol acetate (4), needles from EtOH, m.p. 179–180, $[\alpha]_D + 64$, $\nu_{max} 1740$, 1245 cm⁻¹ (Found: MW 556·412): $C_{35}H_{54}O_5$ requires MW 556·413).

Reactions of lithocarpolone. Lithocarpolone was stable to BF₃ etherate complex at 0°. On overnight treatment with excess toluene-p-sulphonyl chloride in C_5H_5N at 0, lithocarpolone was converted to lithocarpolone toluene-p-sulphonate (7), m.p. 207–209°, v_{max} 1705, 1605, 1190, 1175 cm⁻¹.

To lithocarpolone (58 mg) in dioxan (3 ml) was added NaBH₄ (337 mg) in MeOH (15 ml), and the mixture was refluxed for 2 hr. After removal of most of the solvent under vacuum, the mixture was acidified with 50% aq. HOAc. The precipitated product recrystallized from (Me)₂CO consisted of a mixture of 3-alcohols. The major epimer, isolated by preparative TLC was identical to lithocarpdiol (3) isolated from the plant.

Acknowledgements—We are grateful to Assoc. Prof. A. V. Robertson, Dr. J. K. MacLeod and their respective associates for the MS data; and to Professor E. Mincione, Dr. G. Ohta and Dr. H. Pinhas for samples of cycloar-tane triterpenes. The 100 MHz NMR facilities at Sydney University were provided by the Australian Research Grants Committee.